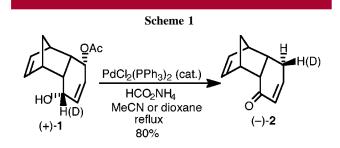
2000 Vol. 2, No. 10 1461-1463

An Enantioconvergent Route to (-)-Shikimic Acid via a Palladium-Mediated Elimination Reaction

Naoyuki Yoshida and Kunio Ogasawara*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-8578, Japan konol@mail.cc.tohoku.ac.jp


Received March 14, 2000

ABSTRACT

$$\begin{array}{c} \text{QAc} \\ \text{HO}'' \\ \text{(+)} \end{array} \begin{array}{c} \text{CO}_2\text{H} \\ \text{HO}'' \\ \text{OH} \\ \text{(-)-shikimic acid} \end{array} \begin{array}{c} \text{MeO}_2\text{C} \\ \text{AcO}'' \\ \text{(-)} \end{array}$$

(-)-Shikimic acid, the key intermediate in the shikimate pathway in plants and microorganisms, has been synthesized in an enantioconvergent manner from both enantiomeric starting materials by employing a palladium-mediated elimination reaction as the key step.

We found a novel palladium-mediated reaction to convert the *cis*-1,4-enediol monoacetate (+)-1 into the α,β -unsaturated ketone (-)-2 by elimination of acetic acid involving a suprafacial 1,4-hydrogen shift, without losing its original chiral integrity (Scheme 1).

Quite recently, we also found² that the tricyclic diol (\pm)-3, readily prepared³ from methyl 2,5-dihydroxybenzoate, is resolved under lipase-mediated transesterification conditions to give the acetate (+)-4 and the alcohol (+)-3 in high

(1) (a) Takano, S.; Higashi, Y.; Moriya, M.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1993, 788. (b) Takano, S.; Higashi, Y.; Kamikubo, T.; Moriya, M.; Ogasawara, K. Synthesis 1993, 948. (c) Takano, S.; Moriya, M.; Kamikubo, T.; Hiroya, K.; Ogasawara, K. Tetrahedron Lett. 1993, 34, 8485. (d) Kamikubo, T.; Shimizu, M.; Ogasawara, K. Enantiomer 1997, 2, enantiomeric purity (Scheme 2). In this paper we report a diastereoselective synthesis⁴ of (-)-shikimic acid **5**, starting from either of the resolved products, (+)-3 and (+)-4 and by employing the palladium-mediated reaction above as the key step. (-)-Shikimic acid is the pivotal biogenetic precursor in the biosynthesis of a variety of aromatic natural products in the biogenetic pathway in plants and microorganisms known as the shikimate pathway.⁵

To acetylate the more hindered hydroxy functionality, the diol (+)-3 (>97% ee) was first silylated at the less hindered site and then acetylated to give (+)-6, $[\alpha]_D^{29}$ +35.5 (c 0.97, CHCl₃), which was further desilylated to give the desired

(5) Haslam, E. Progress in the Chemistry of Organic Natural Products; Herz, W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, C., Eds.; Springer-Verlag: New York, 1996; Vol. 69, p 158. Dewick, P. M. Nat. Prod. Rep. 1998, 15, 17 and references therein.

⁽²⁾ Yoshida, N.; Konno, H.; Kamikubo, T.; Takahashi, M.; Ogasawara, K. Tetrahedron: Asymmetry 1999, 10, 3849.

⁽³⁾ White, J. D.; Shin, H.; Kim, T.-S.; Cutshall, N. S. J. Am. Chem. Soc. 1997, 119, 2404.

⁽⁴⁾ For pertinent reviews on the synthesis of shikimic acid, see: Campbell, M. M.; Sainsbury, M.; Searle, P. A. Synthesis 1993, 179. Jiang, S.; Singh, G. Tetrahedron 1998, 54, 4697. For more recent syntheses, see: (a) Adrio, J.; Carretero, J. C.; Ruano, J. L. G.; Cabrejas, L. M. M. *Tetrahedron: Asymmetry* **1997**, 8, 1623. (b) Fernandez, S.; Diaz, M.; Ferrero, M.; Gotor, V. Tetrahedron Lett. 1997, 38, 5225. (c) Mehta, G.; Mohal, N. Tetrahedron Lett. 1998, 39, 3285. (d) Shinada, T.; Yoshida, Y.; Ohfune, Y. Tetrahedron Lett. 1998, 39, 6027. (e) Refence 4b. (f) Alves, C.; Barros, M. T.; Maycock, C. D.; Ventura, M. R. Tetrahedron 1999, 55, 8443. For alternative enantiocontrolled syntheses developed by the present group, see: (g) Kamikubo, T.; Ogasawara, K. Chem. Lett. 1996, 987. (h) Hiroya, K.; Ogasawara, K. Chem. Commun. 1998, 2033.

Scheme 2

CO₂Me
OH
CHIRAZYME L-2
vinyl acetate
Et₃N, 30 °C
50 h
(ref. 2)

CO₂Me
$$CO_2$$
Me
 CO_2

(+)-3
$$\stackrel{\text{i}}{\longrightarrow}$$
 $\stackrel{\text{CO}_2\text{Me}}{\bigcirc}$ $\stackrel{\text{CO}_2$

Scheme 3a

^a Reagents and conditions: i, (a) TBS−Cl, imidazole, DMF, 0 °C to room temperature; (b) AcCl, Et₃N, DMAP (cat.), CH₂Cl₂, 0 °C to room temperature. (81%). ii, TBAF, THF, room temperature (80%). iii, PdCl₂(PPh₃)₂ (cat.), HCO₂NH₄, MeCN, reflux, 30 min (79%). iv, 30% H₂O₂, Triton B, THF, 0 °C, 1 h, (75%). v, (a) NaBH₄, 0.5 N NaOH−MeOH (1:20 v/v), 0 °C; (b) BzCl, 40% NaOH, BuNCl, toluene, 5 °C, 50 min (59%). vi, diphenyl ether, 300 °C, 1 h (52%). vii, BF₃·OEt₂, toluene, room temperature (94%). viii, K₂CO₃, MeOH (72%). ix, KOH, THF (ref 4).

monoacetate (+)-7, $[\alpha]_D^{29}$ +58.3 (c 0.58, CHCl₃), in 65% overall yield. When (+)-7 was refluxed with ammonium formate in acetonitrile in the presence of a catalytic amount of palladium(II) chloride bistriphenylphosphine (2 mol %)^{1b,6} for 20 min, the single enone (-)-8, $[\alpha]_D^{29}$ -48.7 (c 2.6, CHCl₃), was obtained in 79% yield. Owing to the biased structure,⁷ (-)-8 afforded the *exo*-epoxide (-)-9, $[\alpha]_D^{29}$ -26.9 (c 2.0, CHCl₃), diastereoselectively, which allowed convex face-selective reduction of the ketone functionality to give the *endo*-alcohol 10. Benzoylation of 10 followed by thermolysis of the resulting benzoate 11, $[\alpha]_D^{29}$ -29.2 (c 1.4, CHCl₃), in diphenyl ether at 280 °C induced a retro-Diels-Alder reaction⁷ to give the cyclohexenecarboxylate 12, $[\alpha]_D^{30}$ -37.1 (c 4.7, CHCl₃). The overall yield of 12 from 8 was 23% in four steps.

On exposure to boron trifluoride etherate, ^{8,9} the epoxybenzoate **12** afforded, diastereoselectively, the monobenzoate

14, $[\alpha]_D^{29}$ –159.1 (c 2.0, CHCl₃), which was treated with potassium carbonate in methanol to give methyl shikimate 15, mp 115–116 °C, $[\alpha]_D^{30}$ –128.0 (c 0.1, EtOH) [lit.^{4g,h} mp 116.5–117.5 °C, $[\alpha]_D^{29}$ –125.5 (c 0.9, EtOH)]. The overall yield of 15 from 12 was 67%. Diastereoselective generation of the monobenzoate 14 was presumed to be due to the neighboring effect of the benzoate functionality to form a transient oxonium intermediate 13. Transformation of 15 into (–)-shikimic acid 5 has been done^{4g,h} (Scheme 3).

ŌH 14 : R=Bz 15 : R=H

In the other route, the acetate (+)-4 (>99% ee) was first deacetylated to give the diol (-)-3, $[\alpha]_D^{29}$ -12.5 (c 0.2, CHCl₃), which was converted into (-)-7, $[\alpha]_D^{29}$ -58.2 (c 0.6, CHCl₃), via the TBS ether (+)-6, $[\alpha]_D^{29}$ -35.3 (c 1.0, CHCl₃), by employing the same procedure for the enantiomer (+)-7. Upon treatment with ammonium formate in acetonitrile in the presence of a catalytic amount of the palladium catalyst above (2 mol %), (-)-7 afforded the enantiomeric enone (+)-8, $[\alpha]_D^{30}$ +49.1 (c 1.1, CHCl₃). This was then

Org. Lett., Vol. 2, No. 10, 2000

⁽⁶⁾ Tsuji, J.; Yamakawa, T. Tetrahedron Lett. 1979, 613.

⁽⁷⁾ Ogasawara, K. J. Synth. Org. Chem., Jpn. 1999, 57, 957.

⁽⁸⁾ Prystas, M.; Gustafsson, H.; Sorm, F. Collect. Czech. Chem. Commun. 1971, 36, 1487.

⁽⁹⁾ Honzumi, M.; Hiroya, K.; Taniguchi, T.; Ogasawara, K. Chem. Commun. 1999, 1985.

^a Reagents and conditions: i, (a) MeOH, K₂CO₃, room temperature; (b) TBS−Cl, imidazole, DMF, 0 °C to room temperature; (c) AcCl, Et₃N, DMAP (cat.), CH₂Cl₂, 0 °C to room temperature (55%). ii, TBAF, THF, room temperature (89%). iii, PdCl₂(PPh₃)₂ (cat.), HCO₂NH₄, MeCN, reflux, 30 min (81%). iv, 30% H₂O₂, Triton B, THF, 0 °C, 1 h, (79%). v, diphenyl ether, 300 °C, 10 min (47%). vi, NaBH₄− CeCl₃·7H₂O, MeOH, −78 °C (40% of **17** and 13% of **18**). vii, (a) 80% AcOH, reflux, 1 h; (b) NaOMe, MeOH (55%). viii, TPAP (cat.), NMO, 4A sieves, CH₂Cl₂ (82%). ix, KOH-THF (ref 4).

transformed diastereoselectively into the enantiomeric *exo*-epoxide (+)-**9**, $[\alpha]_D^{30}$ +26.8 (*c* 0.6, CHCl₃), on reaction with alkaline hydrogen peroxide. The overall yield of the epoxide (+)-**9** from the acetate (+)-**4** was 31% in six steps.

Retro-Diels—Alder reaction was carried out at this stage by heating (+)-9 in diphenyl ether to give the cyclohexenone **16**, $[\alpha]_D^{30}$ +58.3 (c 0.1, CHCl₃), in 47% yield. Although diastereoselectivity was less than satisfactory, treatment of the enone with sodium borohydride and cerium(III) chloride¹⁰ allowed chemoselective 1,2-reduction to afford a mixture of two isomeric products from which the desired α -alcohol **17**, mp 80–82 °C, $[\alpha]_D^{30}$ –54.8 (c 1.1, CHCl₃), having *all-cis* stereochemistry was obtained in 40% yield after separation of the undesired epimeric β -alcohol **18**, $[\alpha]_D^{30}$ +51.9 (c 0.1, CHCl₃), in 13% yield by silica gel column chromatography. The latter compound was reverted to the enone **16** by oxidation using tetrapropylammonium perruthenate¹¹ (TPAP) in the presence of *N*-methylmorphorine *N*-oxide (NMO) and

recycled. An attempt to obtain the α -alcohol **17** from the β -alcohol **18** by Mitsunobu inversion as well as from (+)-9 via a sequence involving the generation of *ent*-**10** followed by Mitsunobu inversion and retro-Diels—Alder reaction resulted in a formation of a complex mixture. The (-)-alcohol **17** has been obtained by Pawlak and Berchtold¹² by employing a different procedure and has been transformed into (-)-shikimic acid **5**. By following the reported procedure, ¹² **17** was transformed diastereoselectively into methyl shikimate **15**, mp 116–117 °C, [α] $_{\rm D}$ ³⁰ –129.0 (c 0.1, EtOH), in 55% yield by refluxing with acetic acid, followed by alkaline methanolysis (Scheme 4).

Thus, an enantioconvergent synthesis of (-)-shikimic acid 5 has been established by employing the palladium-mediated elimination reaction we found as the key step. The enantio-convergency and stereoselectivity demonstrated are all due to the biased framework and the thermal instability of the tricyclic substrate that we used in the present study.

OL005805Q

Org. Lett., Vol. 2, No. 10, 2000

⁽¹⁰⁾ Gemal, A. L.; Luche. J. L. J. Am. Chem. Soc. 1981, 103, 5454.
(11) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.

⁽¹²⁾ Pawlak, J. L.; Berchtold, G. A. J. Org. Chem. 1987, 52, 1765.